tiny_dnn
1.0.0
A header only, dependency-free deep learning framework in C++11
|
▼ tiny_dnn | |
▼ activations | |
activation_function.h | |
▼ core | |
► framework | |
► kernels | |
► params | |
backend.h | |
backend_avx.h | |
backend_dnn.h | |
backend_nnp.h | |
backend_tiny.h | |
session.h | |
▼ io | |
► caffe | |
cifar10_parser.h | |
display.h | |
layer_factory.h | |
mnist_parser.h | |
▼ layers | |
arithmetic_layer.h | |
average_pooling_layer.h | |
average_unpooling_layer.h | |
batch_normalization_layer.h | |
concat_layer.h | |
convolutional_layer.h | |
deconvolutional_layer.h | |
dropout_layer.h | |
feedforward_layer.h | |
fully_connected_layer.h | |
input_layer.h | |
layer.h | |
layers.h | |
linear_layer.h | |
lrn_layer.h | |
max_pooling_layer.h | |
max_unpooling_layer.h | |
partial_connected_layer.h | |
power_layer.h | |
quantized_convolutional_layer.h | |
quantized_deconvolutional_layer.h | |
quantized_fully_connected_layer.h | |
slice_layer.h | |
▼ lossfunctions | |
loss_function.h | |
▼ models | |
alexnet.h | |
▼ optimizers | |
optimizer.h | |
▼ util | |
aligned_allocator.h | |
colored_print.h | |
deform.h | |
deserialization_helper.h | |
graph_visualizer.h | |
image.h | |
macro.h | |
math_functions.h | |
nn_error.h | |
parallel_for.h | |
product.h | |
random.h | |
serialization_helper.h | |
serialization_layer_list.h | |
target_cost.h | |
util.h | |
weight_init.h | |
config.h | |
network.h | |
node.h | |
nodes.h | |
tiny_dnn.h |