tiny_dnn
1.0.0
A header only, dependency-free deep learning framework in C++11
Class Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
|
X
A
absolute
(tiny_dnn)
absolute_eps
(tiny_dnn)
adagrad
(tiny_dnn)
adam
(tiny_dnn)
alexnet
(models)
aligned_allocator
(tiny_dnn)
average_pooling_layer
(tiny_dnn)
average_unpooling_layer
(tiny_dnn)
avx_backend
(tiny_dnn::core)
B
backend
(tiny_dnn::core)
batch_normalization_layer
(tiny_dnn)
blocked_range
(tiny_dnn)
C
caffe_layer_vector
(tiny_dnn::detail)
concat_layer
(tiny_dnn)
connection_table
(tiny_dnn::core)
constant
(tiny_dnn::weight_init)
Conv2dGradOp
(tiny_dnn)
Conv2dLibDNNBackwardOp
(tiny_dnn)
Conv2dLibDNNForwardOp
(tiny_dnn)
Conv2dOp
(tiny_dnn)
Conv2dOpenCLBackwardOp
(tiny_dnn)
Conv2dOpenCLForwardOp
(tiny_dnn)
Conv2dPadding
(tiny_dnn::core)
conv_layer_worker_specific_storage
(tiny_dnn::core)
conv_params
(tiny_dnn::core)
convolutional_layer
(tiny_dnn)
cross_entropy
(tiny_dnn)
cross_entropy_multiclass
(tiny_dnn)
D
deconv_layer_worker_specific_storage
(tiny_dnn::core)
deconv_params
(tiny_dnn::core)
deconvolutional_layer
(tiny_dnn)
deserialization_helper
(tiny_dnn)
Device
(tiny_dnn)
dnn_backend
(tiny_dnn::core)
dropout_layer
(tiny_dnn)
E
edge
(tiny_dnn)
elementwise_add_layer
(tiny_dnn)
elu
(tiny_dnn::activation)
F
feedforward_layer
(tiny_dnn)
foobar
fully_connected_layer
(tiny_dnn)
fully_params
(tiny_dnn::core)
FullyConnectedGradOp
(tiny_dnn)
FullyConnectedOp
(tiny_dnn)
function
(tiny_dnn::activation)
function
(tiny_dnn::weight_init)
G
gaussian
(tiny_dnn::weight_init)
generic_vec_type
(vectorize::detail)
gradient_descent
(tiny_dnn)
graph
(tiny_dnn)
graph_visualizer
(tiny_dnn)
H
he
(tiny_dnn::weight_init)
I
identity
(tiny_dnn::activation)
image
(tiny_dnn)
index3d
(tiny_dnn)
input_layer
(tiny_dnn)
L
layer
(tiny_dnn)
layer_node
(tiny_dnn::detail)
leaky_relu
(tiny_dnn::activation)
lecun
(tiny_dnn::weight_init)
linear_layer
(tiny_dnn)
lrn_layer
(tiny_dnn)
M
max_pooling_layer
(tiny_dnn)
max_pooling_layer_worker_specific_storage
(tiny_dnn::core)
max_unpooling_layer
(tiny_dnn)
maxpool_params
(tiny_dnn::core)
MaxPoolGradOp
(tiny_dnn)
MaxPoolOp
(tiny_dnn)
mnist_header
(tiny_dnn::detail)
momentum
(tiny_dnn)
mse
(tiny_dnn)
N
network
(tiny_dnn)
nn_error
(tiny_dnn)
nn_info
(tiny_dnn)
nn_not_implemented_error
(tiny_dnn)
nn_warn
(tiny_dnn)
nnp_backend
(tiny_dnn::core)
node
(tiny_dnn)
node_tuple
(tiny_dnn)
nodes
(tiny_dnn)
O
OpKernel
(tiny_dnn::core)
OpKernelConstruction
(tiny_dnn::core)
OpKernelContext
(tiny_dnn::core)
OpKernelContext::OpParams
(tiny_dnn::core)
optimizer
(tiny_dnn)
P
Params
(tiny_dnn::core)
partial_connected_layer
(tiny_dnn)
power_layer
(tiny_dnn)
Program
(tiny_dnn)
ProgramHash
(tiny_dnn)
ProgramManager
(tiny_dnn)
progress_display
(tiny_dnn)
Q
quantized_convolutional_layer
(tiny_dnn)
quantized_deconvolutional_layer
(tiny_dnn)
quantized_fully_connected_layer
(tiny_dnn)
R
random_generator
(tiny_dnn)
aligned_allocator::rebind
(tiny_dnn)
relu
(tiny_dnn::activation)
result
(tiny_dnn)
RMSprop
(tiny_dnn)
S
scalable
(tiny_dnn::weight_init)
sequential
(tiny_dnn)
serialization_helper
(tiny_dnn)
session
(tiny_dnn::core)
sigmoid
(tiny_dnn::activation)
slice_layer
(tiny_dnn)
softmax
(tiny_dnn::activation)
stateful_optimizer
(tiny_dnn)
T
tan_h
(tiny_dnn::activation)
tan_hp1m2
(tiny_dnn::activation)
Tensor
(tiny_dnn)
timer
(tiny_dnn)
tiny_backend
(tiny_dnn::core)
X
xavier
(tiny_dnn::weight_init)
Generated by
1.9.1