Actual source code: test2.c
slepc-3.17.0 2022-03-31
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
11: static char help[] = "Test NEP interface functions.\n\n";
13: #include <slepcnep.h>
15: int main(int argc,char **argv)
16: {
17: Mat A[3],B; /* problem matrices */
18: FN f[3],g; /* problem functions */
19: NEP nep; /* eigenproblem solver context */
20: DS ds;
21: RG rg;
22: PetscReal tol;
23: PetscScalar coeffs[2],target;
24: PetscInt n=20,i,its,nev,ncv,mpd,Istart,Iend,nterm;
25: PetscBool twoside;
26: NEPWhich which;
27: NEPConvergedReason reason;
28: NEPType type;
29: NEPRefine refine;
30: NEPRefineScheme rscheme;
31: NEPConv conv;
32: NEPStop stop;
33: NEPProblemType ptype;
34: MatStructure mstr;
35: PetscViewerAndFormat *vf;
37: SlepcInitialize(&argc,&argv,(char*)0,help);
38: PetscPrintf(PETSC_COMM_WORLD,"\nDiagonal Nonlinear Eigenproblem, n=%" PetscInt_FMT "\n\n",n);
40: /*
41: Matrices
42: */
43: MatCreate(PETSC_COMM_WORLD,&A[0]);
44: MatSetSizes(A[0],PETSC_DECIDE,PETSC_DECIDE,n,n);
45: MatSetFromOptions(A[0]);
46: MatSetUp(A[0]);
47: MatGetOwnershipRange(A[0],&Istart,&Iend);
48: for (i=Istart;i<Iend;i++) MatSetValue(A[0],i,i,i+1,INSERT_VALUES);
49: MatAssemblyBegin(A[0],MAT_FINAL_ASSEMBLY);
50: MatAssemblyEnd(A[0],MAT_FINAL_ASSEMBLY);
52: MatCreate(PETSC_COMM_WORLD,&A[1]);
53: MatSetSizes(A[1],PETSC_DECIDE,PETSC_DECIDE,n,n);
54: MatSetFromOptions(A[1]);
55: MatSetUp(A[1]);
56: MatGetOwnershipRange(A[1],&Istart,&Iend);
57: for (i=Istart;i<Iend;i++) MatSetValue(A[1],i,i,1.0,INSERT_VALUES);
58: MatAssemblyBegin(A[1],MAT_FINAL_ASSEMBLY);
59: MatAssemblyEnd(A[1],MAT_FINAL_ASSEMBLY);
61: MatCreate(PETSC_COMM_WORLD,&A[2]);
62: MatSetSizes(A[2],PETSC_DECIDE,PETSC_DECIDE,n,n);
63: MatSetFromOptions(A[2]);
64: MatSetUp(A[2]);
65: MatGetOwnershipRange(A[1],&Istart,&Iend);
66: for (i=Istart;i<Iend;i++) MatSetValue(A[2],i,i,n/(PetscReal)(i+1),INSERT_VALUES);
67: MatAssemblyBegin(A[2],MAT_FINAL_ASSEMBLY);
68: MatAssemblyEnd(A[2],MAT_FINAL_ASSEMBLY);
70: /*
71: Functions: f0=-lambda, f1=1.0, f2=sqrt(lambda)
72: */
73: FNCreate(PETSC_COMM_WORLD,&f[0]);
74: FNSetType(f[0],FNRATIONAL);
75: coeffs[0] = -1.0; coeffs[1] = 0.0;
76: FNRationalSetNumerator(f[0],2,coeffs);
78: FNCreate(PETSC_COMM_WORLD,&f[1]);
79: FNSetType(f[1],FNRATIONAL);
80: coeffs[0] = 1.0;
81: FNRationalSetNumerator(f[1],1,coeffs);
83: FNCreate(PETSC_COMM_WORLD,&f[2]);
84: FNSetType(f[2],FNSQRT);
86: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
87: Create eigensolver and test interface functions
88: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
89: NEPCreate(PETSC_COMM_WORLD,&nep);
90: NEPSetSplitOperator(nep,3,A,f,SAME_NONZERO_PATTERN);
91: NEPGetSplitOperatorInfo(nep,&nterm,&mstr);
92: PetscPrintf(PETSC_COMM_WORLD," Nonlinear function with %" PetscInt_FMT " terms, with %s nonzero pattern\n",nterm,MatStructures[mstr]);
93: NEPGetSplitOperatorTerm(nep,0,&B,&g);
94: MatView(B,NULL);
95: FNView(g,NULL);
97: NEPSetType(nep,NEPRII);
98: NEPGetType(nep,&type);
99: PetscPrintf(PETSC_COMM_WORLD," Type set to %s\n",type);
100: NEPGetTwoSided(nep,&twoside);
101: PetscPrintf(PETSC_COMM_WORLD," Two-sided flag = %s\n",twoside?"true":"false");
103: NEPGetProblemType(nep,&ptype);
104: PetscPrintf(PETSC_COMM_WORLD," Problem type before changing = %d",(int)ptype);
105: NEPSetProblemType(nep,NEP_RATIONAL);
106: NEPGetProblemType(nep,&ptype);
107: PetscPrintf(PETSC_COMM_WORLD," ... changed to %d.\n",(int)ptype);
109: NEPSetRefine(nep,NEP_REFINE_SIMPLE,1,1e-9,2,NEP_REFINE_SCHEME_EXPLICIT);
110: NEPGetRefine(nep,&refine,NULL,&tol,&its,&rscheme);
111: PetscPrintf(PETSC_COMM_WORLD," Refinement: %s, tol=%g, its=%" PetscInt_FMT ", scheme=%s\n",NEPRefineTypes[refine],(double)tol,its,NEPRefineSchemes[rscheme]);
113: NEPSetTarget(nep,1.1);
114: NEPGetTarget(nep,&target);
115: NEPSetWhichEigenpairs(nep,NEP_TARGET_MAGNITUDE);
116: NEPGetWhichEigenpairs(nep,&which);
117: PetscPrintf(PETSC_COMM_WORLD," Which = %d, target = %g\n",(int)which,(double)PetscRealPart(target));
119: NEPSetDimensions(nep,1,12,PETSC_DEFAULT);
120: NEPGetDimensions(nep,&nev,&ncv,&mpd);
121: PetscPrintf(PETSC_COMM_WORLD," Dimensions: nev=%" PetscInt_FMT ", ncv=%" PetscInt_FMT ", mpd=%" PetscInt_FMT "\n",nev,ncv,mpd);
123: NEPSetTolerances(nep,1.0e-6,200);
124: NEPGetTolerances(nep,&tol,&its);
125: PetscPrintf(PETSC_COMM_WORLD," Tolerance = %.6f, max_its = %" PetscInt_FMT "\n",(double)tol,its);
127: NEPSetConvergenceTest(nep,NEP_CONV_ABS);
128: NEPGetConvergenceTest(nep,&conv);
129: NEPSetStoppingTest(nep,NEP_STOP_BASIC);
130: NEPGetStoppingTest(nep,&stop);
131: PetscPrintf(PETSC_COMM_WORLD," Convergence test = %d, stopping test = %d\n",(int)conv,(int)stop);
133: PetscViewerAndFormatCreate(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_DEFAULT,&vf);
134: NEPMonitorSet(nep,(PetscErrorCode (*)(NEP,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*))NEPMonitorFirst,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
135: NEPMonitorCancel(nep);
137: NEPGetDS(nep,&ds);
138: DSView(ds,NULL);
139: NEPSetFromOptions(nep);
141: NEPGetRG(nep,&rg);
142: RGView(rg,NULL);
144: NEPSolve(nep);
145: NEPGetConvergedReason(nep,&reason);
146: PetscPrintf(PETSC_COMM_WORLD," Finished - converged reason = %d\n",(int)reason);
148: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
149: Display solution and clean up
150: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
151: NEPErrorView(nep,NEP_ERROR_RELATIVE,NULL);
152: NEPDestroy(&nep);
153: MatDestroy(&A[0]);
154: MatDestroy(&A[1]);
155: MatDestroy(&A[2]);
156: FNDestroy(&f[0]);
157: FNDestroy(&f[1]);
158: FNDestroy(&f[2]);
159: SlepcFinalize();
160: return 0;
161: }
163: /*TEST
165: test:
166: suffix: 1
168: TEST*/