Actual source code: ex47.c

slepc-3.17.0 2022-03-31
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */

 11: static char help[] = "Shows how to recover symmetry when solving a GHEP as non-symmetric.\n\n"
 12:   "The command line options are:\n"
 13:   "  -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
 14:   "  -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";

 16: #include <slepceps.h>

 18: /*
 19:    User context for shell matrix
 20: */
 21: typedef struct {
 22:   KSP       ksp;
 23:   Mat       B;
 24:   Vec       w;
 25: } CTX_SHELL;

 27: /*
 28:     Matrix-vector product function for user matrix
 29:        y <-- A^{-1}*B*x
 30:     The matrix A^{-1}*B*x is not symmetric, but it is self-adjoint with respect
 31:     to the B-inner product. Here we assume A is symmetric and B is SPD.
 32:  */
 33: PetscErrorCode MatMult_Sinvert0(Mat S,Vec x,Vec y)
 34: {
 35:   CTX_SHELL      *ctx;

 38:   MatShellGetContext(S,&ctx);
 39:   MatMult(ctx->B,x,ctx->w);
 40:   KSPSolve(ctx->ksp,ctx->w,y);
 41:   PetscFunctionReturn(0);
 42: }

 44: int main(int argc,char **argv)
 45: {
 46:   Mat               A,B,S;      /* matrices */
 47:   EPS               eps;        /* eigenproblem solver context */
 48:   BV                bv;
 49:   Vec               *X,v;
 50:   PetscReal         lev=0.0,tol=1000*PETSC_MACHINE_EPSILON;
 51:   PetscInt          N,n=45,m,Istart,Iend,II,i,j,nconv;
 52:   PetscBool         flag;
 53:   CTX_SHELL         *ctx;

 55:   SlepcInitialize(&argc,&argv,(char*)0,help);
 56:   PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);
 57:   PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag);
 58:   if (!flag) m=n;
 59:   N = n*m;
 60:   PetscPrintf(PETSC_COMM_WORLD,"\nGeneralized Symmetric Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m);

 62:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 63:          Compute the matrices that define the eigensystem, Ax=kBx
 64:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

 66:   MatCreate(PETSC_COMM_WORLD,&A);
 67:   MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N);
 68:   MatSetFromOptions(A);
 69:   MatSetUp(A);

 71:   MatCreate(PETSC_COMM_WORLD,&B);
 72:   MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,N,N);
 73:   MatSetFromOptions(B);
 74:   MatSetUp(B);

 76:   MatGetOwnershipRange(A,&Istart,&Iend);
 77:   for (II=Istart;II<Iend;II++) {
 78:     i = II/n; j = II-i*n;
 79:     if (i>0) MatSetValue(A,II,II-n,-1.0,INSERT_VALUES);
 80:     if (i<m-1) MatSetValue(A,II,II+n,-1.0,INSERT_VALUES);
 81:     if (j>0) MatSetValue(A,II,II-1,-1.0,INSERT_VALUES);
 82:     if (j<n-1) MatSetValue(A,II,II+1,-1.0,INSERT_VALUES);
 83:     MatSetValue(A,II,II,4.0,INSERT_VALUES);
 84:     MatSetValue(B,II,II,2.0/PetscLogScalar(II+2),INSERT_VALUES);
 85:   }

 87:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
 88:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
 89:   MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
 90:   MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
 91:   MatCreateVecs(B,&v,NULL);

 93:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 94:               Create a shell matrix S = A^{-1}*B
 95:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 96:   PetscNew(&ctx);
 97:   KSPCreate(PETSC_COMM_WORLD,&ctx->ksp);
 98:   KSPSetOperators(ctx->ksp,A,A);
 99:   KSPSetTolerances(ctx->ksp,tol,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);
100:   KSPSetFromOptions(ctx->ksp);
101:   ctx->B = B;
102:   MatCreateVecs(A,&ctx->w,NULL);
103:   MatCreateShell(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,N,N,(void*)ctx,&S);
104:   MatShellSetOperation(S,MATOP_MULT,(void(*)(void))MatMult_Sinvert0);

106:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
107:                 Create the eigensolver and set various options
108:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

110:   EPSCreate(PETSC_COMM_WORLD,&eps);
111:   EPSSetOperators(eps,S,NULL);
112:   EPSSetProblemType(eps,EPS_HEP);  /* even though S is not symmetric */
113:   EPSSetTolerances(eps,tol,PETSC_DEFAULT);
114:   EPSSetFromOptions(eps);

116:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
117:                       Solve the eigensystem
118:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

120:   EPSSetUp(eps);   /* explicitly call setup */
121:   EPSGetBV(eps,&bv);
122:   BVSetMatrix(bv,B,PETSC_FALSE);  /* set inner product matrix to recover symmetry */
123:   EPSSolve(eps);

125:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
126:                  Display solution and check B-orthogonality
127:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

129:   EPSGetTolerances(eps,&tol,NULL);
130:   EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL);
131:   EPSGetConverged(eps,&nconv);
132:   if (nconv>1) {
133:     VecDuplicateVecs(v,nconv,&X);
134:     for (i=0;i<nconv;i++) EPSGetEigenvector(eps,i,X[i],NULL);
135:     VecCheckOrthonormality(X,nconv,NULL,nconv,B,NULL,&lev);
136:     if (lev<10*tol) PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality below the tolerance\n");
137:     else PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality: %g\n",(double)lev);
138:     VecDestroyVecs(nconv,&X);
139:   }

141:   EPSDestroy(&eps);
142:   MatDestroy(&A);
143:   MatDestroy(&B);
144:   VecDestroy(&v);
145:   KSPDestroy(&ctx->ksp);
146:   VecDestroy(&ctx->w);
147:   PetscFree(ctx);
148:   MatDestroy(&S);
149:   SlepcFinalize();
150:   return 0;
151: }

153: /*TEST

155:    test:
156:       args: -n 18 -eps_nev 4 -eps_max_it 1500
157:       requires: !single

159: TEST*/