AOMedia AV1 Codec
av1_common_int.h
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13 #define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14 
15 #include "config/aom_config.h"
16 #include "config/av1_rtcd.h"
17 
18 #include "aom/internal/aom_codec_internal.h"
19 #include "aom_util/aom_thread.h"
20 #include "av1/common/alloccommon.h"
21 #include "av1/common/av1_loopfilter.h"
22 #include "av1/common/entropy.h"
23 #include "av1/common/entropymode.h"
24 #include "av1/common/entropymv.h"
25 #include "av1/common/enums.h"
26 #include "av1/common/frame_buffers.h"
27 #include "av1/common/mv.h"
28 #include "av1/common/quant_common.h"
29 #include "av1/common/restoration.h"
30 #include "av1/common/tile_common.h"
31 #include "av1/common/timing.h"
32 #include "aom_dsp/grain_params.h"
33 #include "aom_dsp/grain_table.h"
34 #include "aom_dsp/odintrin.h"
35 #ifdef __cplusplus
36 extern "C" {
37 #endif
38 
39 #if defined(__clang__) && defined(__has_warning)
40 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
41 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT
42 #endif
43 #elif defined(__GNUC__) && __GNUC__ >= 7
44 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT
45 #endif
46 
47 #ifndef AOM_FALLTHROUGH_INTENDED
48 #define AOM_FALLTHROUGH_INTENDED \
49  do { \
50  } while (0)
51 #endif
52 
53 #define CDEF_MAX_STRENGTHS 16
54 
55 /* Constant values while waiting for the sequence header */
56 #define FRAME_ID_LENGTH 15
57 #define DELTA_FRAME_ID_LENGTH 14
58 
59 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
60 // Extra frame context which is always kept at default values
61 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
62 #define PRIMARY_REF_BITS 3
63 #define PRIMARY_REF_NONE 7
64 
65 #define NUM_PING_PONG_BUFFERS 2
66 
67 #define MAX_NUM_TEMPORAL_LAYERS 8
68 #define MAX_NUM_SPATIAL_LAYERS 4
69 /* clang-format off */
70 // clang-format seems to think this is a pointer dereference and not a
71 // multiplication.
72 #define MAX_NUM_OPERATING_POINTS \
73  (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
74 /* clang-format on */
75 
76 // TODO(jingning): Turning this on to set up transform coefficient
77 // processing timer.
78 #define TXCOEFF_TIMER 0
79 #define TXCOEFF_COST_TIMER 0
80 
83 enum {
84  SINGLE_REFERENCE = 0,
85  COMPOUND_REFERENCE = 1,
86  REFERENCE_MODE_SELECT = 2,
87  REFERENCE_MODES = 3,
88 } UENUM1BYTE(REFERENCE_MODE);
89 
90 enum {
94  REFRESH_FRAME_CONTEXT_DISABLED,
99  REFRESH_FRAME_CONTEXT_BACKWARD,
100 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
101 
102 #define MFMV_STACK_SIZE 3
103 typedef struct {
104  int_mv mfmv0;
105  uint8_t ref_frame_offset;
106 } TPL_MV_REF;
107 
108 typedef struct {
109  int_mv mv;
110  MV_REFERENCE_FRAME ref_frame;
111 } MV_REF;
112 
113 typedef struct RefCntBuffer {
114  // For a RefCntBuffer, the following are reference-holding variables:
115  // - cm->ref_frame_map[]
116  // - cm->cur_frame
117  // - cm->scaled_ref_buf[] (encoder only)
118  // - pbi->output_frame_index[] (decoder only)
119  // With that definition, 'ref_count' is the number of reference-holding
120  // variables that are currently referencing this buffer.
121  // For example:
122  // - suppose this buffer is at index 'k' in the buffer pool, and
123  // - Total 'n' of the variables / array elements above have value 'k' (that
124  // is, they are pointing to buffer at index 'k').
125  // Then, pool->frame_bufs[k].ref_count = n.
126  int ref_count;
127 
128  unsigned int order_hint;
129  unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
130 
131  // These variables are used only in encoder and compare the absolute
132  // display order hint to compute the relative distance and overcome
133  // the limitation of get_relative_dist() which returns incorrect
134  // distance when a very old frame is used as a reference.
135  unsigned int display_order_hint;
136  unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
137 #if CONFIG_FRAME_PARALLEL_ENCODE
138  // Frame's level within the hierarchical structure.
139  unsigned int pyramid_level;
140 #endif // CONFIG_FRAME_PARALLEL_ENCODE
141  MV_REF *mvs;
142  uint8_t *seg_map;
143  struct segmentation seg;
144  int mi_rows;
145  int mi_cols;
146  // Width and height give the size of the buffer (before any upscaling, unlike
147  // the sizes that can be derived from the buf structure)
148  int width;
149  int height;
150  WarpedMotionParams global_motion[REF_FRAMES];
151  int showable_frame; // frame can be used as show existing frame in future
152  uint8_t film_grain_params_present;
153  aom_film_grain_t film_grain_params;
154  aom_codec_frame_buffer_t raw_frame_buffer;
155  YV12_BUFFER_CONFIG buf;
156  int temporal_id; // Temporal layer ID of the frame
157  int spatial_id; // Spatial layer ID of the frame
158  FRAME_TYPE frame_type;
159 
160  // This is only used in the encoder but needs to be indexed per ref frame
161  // so it's extremely convenient to keep it here.
162  int interp_filter_selected[SWITCHABLE];
163 
164  // Inter frame reference frame delta for loop filter
165  int8_t ref_deltas[REF_FRAMES];
166 
167  // 0 = ZERO_MV, MV
168  int8_t mode_deltas[MAX_MODE_LF_DELTAS];
169 
170  FRAME_CONTEXT frame_context;
171 } RefCntBuffer;
172 
173 typedef struct BufferPool {
174 // Protect BufferPool from being accessed by several FrameWorkers at
175 // the same time during frame parallel decode.
176 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
177 // TODO(wtc): Remove this. See
178 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
179 #if CONFIG_MULTITHREAD
180  pthread_mutex_t pool_mutex;
181 #endif
182 
183  // Private data associated with the frame buffer callbacks.
184  void *cb_priv;
185 
187  aom_release_frame_buffer_cb_fn_t release_fb_cb;
188 
189  RefCntBuffer frame_bufs[FRAME_BUFFERS];
190 
191  // Frame buffers allocated internally by the codec.
192  InternalFrameBufferList int_frame_buffers;
193 } BufferPool;
194 
198 typedef struct {
200  uint16_t *colbuf[MAX_MB_PLANE];
202  uint16_t *linebuf[MAX_MB_PLANE];
204  uint16_t *srcbuf;
206  size_t allocated_colbuf_size[MAX_MB_PLANE];
208  size_t allocated_linebuf_size[MAX_MB_PLANE];
216  int cdef_strengths[CDEF_MAX_STRENGTHS];
218  int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
225 } CdefInfo;
226 
229 typedef struct {
230  int delta_q_present_flag;
231  // Resolution of delta quant
232  int delta_q_res;
233  int delta_lf_present_flag;
234  // Resolution of delta lf level
235  int delta_lf_res;
236  // This is a flag for number of deltas of loop filter level
237  // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
238  // 1: use separate deltas for each filter level
239  int delta_lf_multi;
240 } DeltaQInfo;
241 
242 typedef struct {
243  int enable_order_hint; // 0 - disable order hint, and related tools
244  int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs,
245  // frame_sign_bias
246  // if 0, enable_dist_wtd_comp and
247  // enable_ref_frame_mvs must be set as 0.
248  int enable_dist_wtd_comp; // 0 - disable dist-wtd compound modes
249  // 1 - enable it
250  int enable_ref_frame_mvs; // 0 - disable ref frame mvs
251  // 1 - enable it
252 } OrderHintInfo;
253 
254 // Sequence header structure.
255 // Note: All syntax elements of sequence_header_obu that need to be
256 // bit-identical across multiple sequence headers must be part of this struct,
257 // so that consistency is checked by are_seq_headers_consistent() function.
258 // One exception is the last member 'op_params' that is ignored by
259 // are_seq_headers_consistent() function.
260 typedef struct SequenceHeader {
261  int num_bits_width;
262  int num_bits_height;
263  int max_frame_width;
264  int max_frame_height;
265  // Whether current and reference frame IDs are signaled in the bitstream.
266  // Frame id numbers are additional information that do not affect the
267  // decoding process, but provide decoders with a way of detecting missing
268  // reference frames so that appropriate action can be taken.
269  uint8_t frame_id_numbers_present_flag;
270  int frame_id_length;
271  int delta_frame_id_length;
272  BLOCK_SIZE sb_size; // Size of the superblock used for this frame
273  int mib_size; // Size of the superblock in units of MI blocks
274  int mib_size_log2; // Log 2 of above.
275 
276  OrderHintInfo order_hint_info;
277 
278  uint8_t force_screen_content_tools; // 0 - force off
279  // 1 - force on
280  // 2 - adaptive
281  uint8_t still_picture; // Video is a single frame still picture
282  uint8_t reduced_still_picture_hdr; // Use reduced header for still picture
283  uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel
284  // 1 - force to integer
285  // 2 - adaptive
286  uint8_t enable_filter_intra; // enables/disables filterintra
287  uint8_t enable_intra_edge_filter; // enables/disables edge upsampling
288  uint8_t enable_interintra_compound; // enables/disables interintra_compound
289  uint8_t enable_masked_compound; // enables/disables masked compound
290  uint8_t enable_dual_filter; // 0 - disable dual interpolation filter
291  // 1 - enable vert/horz filter selection
292  uint8_t enable_warped_motion; // 0 - disable warp for the sequence
293  // 1 - enable warp for the sequence
294  uint8_t enable_superres; // 0 - Disable superres for the sequence
295  // and no frame level superres flag
296  // 1 - Enable superres for the sequence
297  // enable per-frame superres flag
298  uint8_t enable_cdef; // To turn on/off CDEF
299  uint8_t enable_restoration; // To turn on/off loop restoration
300  BITSTREAM_PROFILE profile;
301 
302  // Color config.
303  aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1,
304  // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
305  uint8_t use_highbitdepth; // If true, we need to use 16bit frame buffers.
306  uint8_t monochrome; // Monochorme video
307  aom_color_primaries_t color_primaries;
308  aom_transfer_characteristics_t transfer_characteristics;
309  aom_matrix_coefficients_t matrix_coefficients;
310  int color_range;
311  int subsampling_x; // Chroma subsampling for x
312  int subsampling_y; // Chroma subsampling for y
313  aom_chroma_sample_position_t chroma_sample_position;
314  uint8_t separate_uv_delta_q;
315  uint8_t film_grain_params_present;
316 
317  // Operating point info.
318  int operating_points_cnt_minus_1;
319  int operating_point_idc[MAX_NUM_OPERATING_POINTS];
320  int timing_info_present;
321  aom_timing_info_t timing_info;
322  uint8_t decoder_model_info_present_flag;
323  aom_dec_model_info_t decoder_model_info;
324  uint8_t display_model_info_present_flag;
325  AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
326  uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1.
327 
328  // IMPORTANT: the op_params member must be at the end of the struct so that
329  // are_seq_headers_consistent() can be implemented with a memcmp() call.
330  // TODO(urvang): We probably don't need the +1 here.
331  aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
332 } SequenceHeader;
333 
334 typedef struct {
335  int skip_mode_allowed;
336  int skip_mode_flag;
337  int ref_frame_idx_0;
338  int ref_frame_idx_1;
339 } SkipModeInfo;
340 
341 typedef struct {
342  FRAME_TYPE frame_type;
343  REFERENCE_MODE reference_mode;
344 
345  unsigned int order_hint;
346  unsigned int display_order_hint;
347 #if CONFIG_FRAME_PARALLEL_ENCODE
348  // Frame's level within the hierarchical structure.
349  unsigned int pyramid_level;
350 #endif // CONFIG_FRAME_PARALLEL_ENCODE
351  unsigned int frame_number;
352  SkipModeInfo skip_mode_info;
353  int refresh_frame_flags; // Which ref frames are overwritten by this frame
354  int frame_refs_short_signaling;
355 } CurrentFrame;
356 
362 typedef struct {
410  TX_MODE tx_mode;
411  InterpFilter interp_filter;
425  REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
426 } FeatureFlags;
427 
431 typedef struct CommonTileParams {
432  int cols;
433  int rows;
441 
448 
453  int log2_cols;
454  int log2_rows;
455  int width;
456  int height;
478  int min_log2;
483  int col_start_sb[MAX_TILE_COLS + 1];
488  int row_start_sb[MAX_TILE_ROWS + 1];
492  unsigned int large_scale;
498  unsigned int single_tile_decoding;
500 
510  int mb_rows;
515  int mb_cols;
516 
520  int MBs;
521 
526  int mi_rows;
531  int mi_cols;
532 
554  BLOCK_SIZE mi_alloc_bsize;
555 
572 
579  TX_TYPE *tx_type_map;
580 
589  void (*free_mi)(struct CommonModeInfoParams *mi_params);
594  void (*setup_mi)(struct CommonModeInfoParams *mi_params);
605  void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
606  int height, int mode, BLOCK_SIZE min_partition_size);
608 };
609 
610 typedef struct CommonQuantParams CommonQuantParams;
619 
625 
634 
645 
646  /*
647  * Note: The qindex per superblock may have a delta from the qindex obtained
648  * at frame level from parameters above, based on 'cm->delta_q_info'.
649  */
650 
658  int16_t y_dequant_QTX[MAX_SEGMENTS][2];
659  int16_t u_dequant_QTX[MAX_SEGMENTS][2];
660  int16_t v_dequant_QTX[MAX_SEGMENTS][2];
670  const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
674  const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
684  const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
688  const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
692  const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
712 };
713 
714 typedef struct CommonContexts CommonContexts;
723  PARTITION_CONTEXT **partition;
724 
733  ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
734 
741  TXFM_CONTEXT **txfm;
742 
750 };
751 
755 typedef struct AV1Common {
759  CurrentFrame current_frame;
763  struct aom_internal_error_info *error;
764 
780  int width;
781  int height;
813 
820  uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
827 
831  RefCntBuffer *prev_frame;
832 
837  RefCntBuffer *cur_frame;
838 
859  int remapped_ref_idx[REF_FRAMES];
860 
866  struct scale_factors sf_identity;
867 
874  struct scale_factors ref_scale_factors[REF_FRAMES];
875 
883  RefCntBuffer *ref_frame_map[REF_FRAMES];
884 
891 
899 
906 
911 
916 
917 #if CONFIG_ENTROPY_STATS
921  int coef_cdf_category;
922 #endif // CONFIG_ENTROPY_STATS
923 
928 
932  struct segmentation seg;
933 
938 
943  loop_filter_info_n lf_info;
944  struct loopfilter lf;
951  RestorationInfo rst_info[MAX_MB_PLANE];
952  int32_t *rst_tmpbuf;
953  RestorationLineBuffers *rlbs;
961 
965  aom_film_grain_t film_grain_params;
966 
970  DeltaQInfo delta_q_info;
971 
975  WarpedMotionParams global_motion[REF_FRAMES];
976 
981  SequenceHeader *seq_params;
982 
986  FRAME_CONTEXT *fc;
992  FRAME_CONTEXT *default_frame_context;
993 
998 
1002  BufferPool *buffer_pool;
1003 
1011 
1017  int ref_frame_id[REF_FRAMES];
1027  TPL_MV_REF *tpl_mvs;
1036  int ref_frame_sign_bias[REF_FRAMES];
1042  int8_t ref_frame_side[REF_FRAMES];
1043 
1049 
1055 
1056 #if TXCOEFF_TIMER
1057  int64_t cum_txcoeff_timer;
1058  int64_t txcoeff_timer;
1059  int txb_count;
1060 #endif // TXCOEFF_TIMER
1061 
1062 #if TXCOEFF_COST_TIMER
1063  int64_t cum_txcoeff_cost_timer;
1064  int64_t txcoeff_cost_timer;
1065  int64_t txcoeff_cost_count;
1066 #endif // TXCOEFF_COST_TIMER
1067 } AV1_COMMON;
1068 
1071 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1072 // frame reference count.
1073 static void lock_buffer_pool(BufferPool *const pool) {
1074 #if CONFIG_MULTITHREAD
1075  pthread_mutex_lock(&pool->pool_mutex);
1076 #else
1077  (void)pool;
1078 #endif
1079 }
1080 
1081 static void unlock_buffer_pool(BufferPool *const pool) {
1082 #if CONFIG_MULTITHREAD
1083  pthread_mutex_unlock(&pool->pool_mutex);
1084 #else
1085  (void)pool;
1086 #endif
1087 }
1088 
1089 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1090  if (index < 0 || index >= REF_FRAMES) return NULL;
1091  if (cm->ref_frame_map[index] == NULL) return NULL;
1092  return &cm->ref_frame_map[index]->buf;
1093 }
1094 
1095 static INLINE int get_free_fb(AV1_COMMON *cm) {
1096  RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1097  int i;
1098 
1099  lock_buffer_pool(cm->buffer_pool);
1100  for (i = 0; i < FRAME_BUFFERS; ++i)
1101  if (frame_bufs[i].ref_count == 0) break;
1102 
1103  if (i != FRAME_BUFFERS) {
1104  if (frame_bufs[i].buf.use_external_reference_buffers) {
1105  // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1106  // external reference buffers. Restore the buffer pointers to point to the
1107  // internally allocated memory.
1108  YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1109  ybf->y_buffer = ybf->store_buf_adr[0];
1110  ybf->u_buffer = ybf->store_buf_adr[1];
1111  ybf->v_buffer = ybf->store_buf_adr[2];
1112  ybf->use_external_reference_buffers = 0;
1113  }
1114 
1115  frame_bufs[i].ref_count = 1;
1116  } else {
1117  // We should never run out of free buffers. If this assertion fails, there
1118  // is a reference leak.
1119  assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1120  // Reset i to be INVALID_IDX to indicate no free buffer found.
1121  i = INVALID_IDX;
1122  }
1123 
1124  unlock_buffer_pool(cm->buffer_pool);
1125  return i;
1126 }
1127 
1128 static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1129  // Release the previously-used frame-buffer
1130  if (cm->cur_frame != NULL) {
1131  --cm->cur_frame->ref_count;
1132  cm->cur_frame = NULL;
1133  }
1134 
1135  // Assign a new framebuffer
1136  const int new_fb_idx = get_free_fb(cm);
1137  if (new_fb_idx == INVALID_IDX) return NULL;
1138 
1139  cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1140  cm->cur_frame->buf.buf_8bit_valid = 0;
1141  av1_zero(cm->cur_frame->interp_filter_selected);
1142  return cm->cur_frame;
1143 }
1144 
1145 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1146 // counts accordingly.
1147 static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1148  RefCntBuffer *rhs_ptr) {
1149  RefCntBuffer *const old_ptr = *lhs_ptr;
1150  if (old_ptr != NULL) {
1151  assert(old_ptr->ref_count > 0);
1152  // One less reference to the buffer at 'old_ptr', so decrease ref count.
1153  --old_ptr->ref_count;
1154  }
1155 
1156  *lhs_ptr = rhs_ptr;
1157  // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1158  ++rhs_ptr->ref_count;
1159 }
1160 
1161 static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
1162  return cm->current_frame.frame_type == KEY_FRAME ||
1163  cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1164 }
1165 
1166 static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
1167  return cm->current_frame.frame_type == S_FRAME;
1168 }
1169 
1170 // These functions take a reference frame label between LAST_FRAME and
1171 // EXTREF_FRAME inclusive. Note that this is different to the indexing
1172 // previously used by the frame_refs[] array.
1173 static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1174  const MV_REFERENCE_FRAME ref_frame) {
1175  return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1176  ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1177  : INVALID_IDX;
1178 }
1179 
1180 static INLINE RefCntBuffer *get_ref_frame_buf(
1181  const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1182  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1183  return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1184 }
1185 
1186 // Both const and non-const versions of this function are provided so that it
1187 // can be used with a const AV1_COMMON if needed.
1188 static INLINE const struct scale_factors *get_ref_scale_factors_const(
1189  const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1190  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1191  return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1192 }
1193 
1194 static INLINE struct scale_factors *get_ref_scale_factors(
1195  AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1196  const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1197  return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1198 }
1199 
1200 static INLINE RefCntBuffer *get_primary_ref_frame_buf(
1201  const AV1_COMMON *const cm) {
1202  const int primary_ref_frame = cm->features.primary_ref_frame;
1203  if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1204  const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1205  return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1206 }
1207 
1208 // Returns 1 if this frame might allow mvs from some reference frame.
1209 static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1210  return !cm->features.error_resilient_mode &&
1211  cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1212  cm->seq_params->order_hint_info.enable_order_hint &&
1213  !frame_is_intra_only(cm);
1214 }
1215 
1216 // Returns 1 if this frame might use warped_motion
1217 static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1218  return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1219  cm->seq_params->enable_warped_motion;
1220 }
1221 
1222 static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1223  const int buf_rows = buf->mi_rows;
1224  const int buf_cols = buf->mi_cols;
1225  const CommonModeInfoParams *const mi_params = &cm->mi_params;
1226 
1227  if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1228  buf_cols != mi_params->mi_cols) {
1229  aom_free(buf->mvs);
1230  buf->mi_rows = mi_params->mi_rows;
1231  buf->mi_cols = mi_params->mi_cols;
1232  CHECK_MEM_ERROR(cm, buf->mvs,
1233  (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1234  ((mi_params->mi_cols + 1) >> 1),
1235  sizeof(*buf->mvs)));
1236  aom_free(buf->seg_map);
1237  CHECK_MEM_ERROR(
1238  cm, buf->seg_map,
1239  (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1240  sizeof(*buf->seg_map)));
1241  }
1242 
1243  const int mem_size =
1244  ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1245  int realloc = cm->tpl_mvs == NULL;
1246  if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
1247 
1248  if (realloc) {
1249  aom_free(cm->tpl_mvs);
1250  CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1251  (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1252  cm->tpl_mvs_mem_size = mem_size;
1253  }
1254 }
1255 
1256 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1257 
1258 static INLINE int av1_num_planes(const AV1_COMMON *cm) {
1259  return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1260 }
1261 
1262 static INLINE void av1_init_above_context(CommonContexts *above_contexts,
1263  int num_planes, int tile_row,
1264  MACROBLOCKD *xd) {
1265  for (int i = 0; i < num_planes; ++i) {
1266  xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1267  }
1268  xd->above_partition_context = above_contexts->partition[tile_row];
1269  xd->above_txfm_context = above_contexts->txfm[tile_row];
1270 }
1271 
1272 static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1273  const int num_planes = av1_num_planes(cm);
1274  const CommonQuantParams *const quant_params = &cm->quant_params;
1275 
1276  for (int i = 0; i < num_planes; ++i) {
1277  if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1278  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1279  sizeof(quant_params->y_dequant_QTX));
1280  memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1281  sizeof(quant_params->y_iqmatrix));
1282 
1283  } else {
1284  if (i == AOM_PLANE_U) {
1285  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1286  sizeof(quant_params->u_dequant_QTX));
1287  memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1288  sizeof(quant_params->u_iqmatrix));
1289  } else {
1290  memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1291  sizeof(quant_params->v_dequant_QTX));
1292  memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1293  sizeof(quant_params->v_iqmatrix));
1294  }
1295  }
1296  }
1297  xd->mi_stride = cm->mi_params.mi_stride;
1298  xd->error_info = cm->error;
1299  cfl_init(&xd->cfl, cm->seq_params);
1300 }
1301 
1302 static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1303  const int num_planes) {
1304  int i;
1305  int row_offset = mi_row;
1306  int col_offset = mi_col;
1307  for (i = 0; i < num_planes; ++i) {
1308  struct macroblockd_plane *const pd = &xd->plane[i];
1309  // Offset the buffer pointer
1310  const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1311  if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1312  row_offset = mi_row - 1;
1313  if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1314  col_offset = mi_col - 1;
1315  int above_idx = col_offset;
1316  int left_idx = row_offset & MAX_MIB_MASK;
1317  pd->above_entropy_context =
1318  &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1319  pd->left_entropy_context =
1320  &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1321  }
1322 }
1323 
1324 static INLINE int calc_mi_size(int len) {
1325  // len is in mi units. Align to a multiple of SBs.
1326  return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1327 }
1328 
1329 static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1330  const int num_planes) {
1331  int i;
1332  for (i = 0; i < num_planes; i++) {
1333  xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1334  xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1335 
1336  xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1337  xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1338  }
1339 }
1340 
1341 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1342  int mi_row, int bh, int mi_col, int bw,
1343  int mi_rows, int mi_cols) {
1344  xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1345  xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1346  xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1347  xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1348 
1349  xd->mi_row = mi_row;
1350  xd->mi_col = mi_col;
1351 
1352  // Are edges available for intra prediction?
1353  xd->up_available = (mi_row > tile->mi_row_start);
1354 
1355  const int ss_x = xd->plane[1].subsampling_x;
1356  const int ss_y = xd->plane[1].subsampling_y;
1357 
1358  xd->left_available = (mi_col > tile->mi_col_start);
1361  if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1362  xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1363  if (ss_y && bh < mi_size_high[BLOCK_8X8])
1364  xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1365  if (xd->up_available) {
1366  xd->above_mbmi = xd->mi[-xd->mi_stride];
1367  } else {
1368  xd->above_mbmi = NULL;
1369  }
1370 
1371  if (xd->left_available) {
1372  xd->left_mbmi = xd->mi[-1];
1373  } else {
1374  xd->left_mbmi = NULL;
1375  }
1376 
1377  const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1378  ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1379  xd->is_chroma_ref = chroma_ref;
1380  if (chroma_ref) {
1381  // To help calculate the "above" and "left" chroma blocks, note that the
1382  // current block may cover multiple luma blocks (eg, if partitioned into
1383  // 4x4 luma blocks).
1384  // First, find the top-left-most luma block covered by this chroma block
1385  MB_MODE_INFO **base_mi =
1386  &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1387 
1388  // Then, we consider the luma region covered by the left or above 4x4 chroma
1389  // prediction. We want to point to the chroma reference block in that
1390  // region, which is the bottom-right-most mi unit.
1391  // This leads to the following offsets:
1392  MB_MODE_INFO *chroma_above_mi =
1393  xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1394  xd->chroma_above_mbmi = chroma_above_mi;
1395 
1396  MB_MODE_INFO *chroma_left_mi =
1397  xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1398  xd->chroma_left_mbmi = chroma_left_mi;
1399  }
1400 
1401  xd->height = bh;
1402  xd->width = bw;
1403 
1404  xd->is_last_vertical_rect = 0;
1405  if (xd->width < xd->height) {
1406  if (!((mi_col + xd->width) & (xd->height - 1))) {
1407  xd->is_last_vertical_rect = 1;
1408  }
1409  }
1410 
1411  xd->is_first_horizontal_rect = 0;
1412  if (xd->width > xd->height)
1413  if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1414 }
1415 
1416 static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1417  const MB_MODE_INFO *above_mi,
1418  const MB_MODE_INFO *left_mi) {
1419  const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1420  const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1421  const int above_ctx = intra_mode_context[above];
1422  const int left_ctx = intra_mode_context[left];
1423  return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1424 }
1425 
1426 static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
1427  int mi_col, BLOCK_SIZE subsize,
1428  BLOCK_SIZE bsize) {
1429  PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1430  PARTITION_CONTEXT *const left_ctx =
1431  xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1432 
1433  const int bw = mi_size_wide[bsize];
1434  const int bh = mi_size_high[bsize];
1435  memset(above_ctx, partition_context_lookup[subsize].above, bw);
1436  memset(left_ctx, partition_context_lookup[subsize].left, bh);
1437 }
1438 
1439 static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1440  int subsampling_x, int subsampling_y) {
1441  assert(bsize < BLOCK_SIZES_ALL);
1442  const int bw = mi_size_wide[bsize];
1443  const int bh = mi_size_high[bsize];
1444  int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1445  ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1446  return ref_pos;
1447 }
1448 
1449 static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1450  size_t element) {
1451  assert(cdf != NULL);
1452  return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1453 }
1454 
1455 static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
1456  const aom_cdf_prob *const in,
1457  BLOCK_SIZE bsize) {
1458  (void)bsize;
1459  out[0] = CDF_PROB_TOP;
1460  out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1461  out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1462  out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1463  out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1464  out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1465  if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1466  out[0] = AOM_ICDF(out[0]);
1467  out[1] = AOM_ICDF(CDF_PROB_TOP);
1468 }
1469 
1470 static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
1471  const aom_cdf_prob *const in,
1472  BLOCK_SIZE bsize) {
1473  (void)bsize;
1474  out[0] = CDF_PROB_TOP;
1475  out[0] -= cdf_element_prob(in, PARTITION_VERT);
1476  out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1477  out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1478  out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1479  out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1480  if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1481  out[0] = AOM_ICDF(out[0]);
1482  out[1] = AOM_ICDF(CDF_PROB_TOP);
1483 }
1484 
1485 static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1486  int mi_col, BLOCK_SIZE subsize,
1487  BLOCK_SIZE bsize,
1488  PARTITION_TYPE partition) {
1489  if (bsize >= BLOCK_8X8) {
1490  const int hbs = mi_size_wide[bsize] / 2;
1491  BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1492  switch (partition) {
1493  case PARTITION_SPLIT:
1494  if (bsize != BLOCK_8X8) break;
1495  AOM_FALLTHROUGH_INTENDED;
1496  case PARTITION_NONE:
1497  case PARTITION_HORZ:
1498  case PARTITION_VERT:
1499  case PARTITION_HORZ_4:
1500  case PARTITION_VERT_4:
1501  update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1502  break;
1503  case PARTITION_HORZ_A:
1504  update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1505  update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1506  break;
1507  case PARTITION_HORZ_B:
1508  update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1509  update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1510  break;
1511  case PARTITION_VERT_A:
1512  update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1513  update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1514  break;
1515  case PARTITION_VERT_B:
1516  update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1517  update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1518  break;
1519  default: assert(0 && "Invalid partition type");
1520  }
1521  }
1522 }
1523 
1524 static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1525  int mi_col, BLOCK_SIZE bsize) {
1526  const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1527  const PARTITION_CONTEXT *left_ctx =
1528  xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1529  // Minimum partition point is 8x8. Offset the bsl accordingly.
1530  const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1531  int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1532 
1533  assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1534  assert(bsl >= 0);
1535 
1536  return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1537 }
1538 
1539 // Return the number of elements in the partition CDF when
1540 // partitioning the (square) block with luma block size of bsize.
1541 static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1542  if (bsize <= BLOCK_8X8)
1543  return PARTITION_TYPES;
1544  else if (bsize == BLOCK_128X128)
1545  return EXT_PARTITION_TYPES - 2;
1546  else
1547  return EXT_PARTITION_TYPES;
1548 }
1549 
1550 static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1551  int plane) {
1552  assert(bsize < BLOCK_SIZES_ALL);
1553  int max_blocks_wide = block_size_wide[bsize];
1554 
1555  if (xd->mb_to_right_edge < 0) {
1556  const struct macroblockd_plane *const pd = &xd->plane[plane];
1557  max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1558  }
1559 
1560  // Scale the width in the transform block unit.
1561  return max_blocks_wide >> MI_SIZE_LOG2;
1562 }
1563 
1564 static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1565  int plane) {
1566  int max_blocks_high = block_size_high[bsize];
1567 
1568  if (xd->mb_to_bottom_edge < 0) {
1569  const struct macroblockd_plane *const pd = &xd->plane[plane];
1570  max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1571  }
1572 
1573  // Scale the height in the transform block unit.
1574  return max_blocks_high >> MI_SIZE_LOG2;
1575 }
1576 
1577 static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
1578  const MACROBLOCKD *xd,
1579  int mi_col_start, int mi_col_end,
1580  const int tile_row) {
1581  const SequenceHeader *const seq_params = cm->seq_params;
1582  const int num_planes = av1_num_planes(cm);
1583  const int width = mi_col_end - mi_col_start;
1584  const int aligned_width =
1585  ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1586  const int offset_y = mi_col_start;
1587  const int width_y = aligned_width;
1588  const int offset_uv = offset_y >> seq_params->subsampling_x;
1589  const int width_uv = width_y >> seq_params->subsampling_x;
1590  CommonContexts *const above_contexts = &cm->above_contexts;
1591 
1592  av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1593  if (num_planes > 1) {
1594  if (above_contexts->entropy[1][tile_row] &&
1595  above_contexts->entropy[2][tile_row]) {
1596  av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1597  width_uv);
1598  av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1599  width_uv);
1600  } else {
1601  aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1602  "Invalid value of planes");
1603  }
1604  }
1605 
1606  av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1607  aligned_width);
1608 
1609  memset(above_contexts->txfm[tile_row] + mi_col_start,
1610  tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1611 }
1612 
1613 static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1614  av1_zero(xd->left_entropy_context);
1615  av1_zero(xd->left_partition_context);
1616 
1617  memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1618  sizeof(xd->left_txfm_context_buffer));
1619 }
1620 
1621 // Disable array-bounds checks as the TX_SIZE enum contains values larger than
1622 // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
1623 // infeasible. The assert is enough for static analysis and this or other tools
1624 // asan, valgrind would catch oob access at runtime.
1625 #if defined(__GNUC__) && __GNUC__ >= 4
1626 #pragma GCC diagnostic ignored "-Warray-bounds"
1627 #endif
1628 
1629 #if defined(__GNUC__) && __GNUC__ >= 4
1630 #pragma GCC diagnostic warning "-Warray-bounds"
1631 #endif
1632 
1633 static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1634  int i;
1635  for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1636 }
1637 
1638 static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1639  const MACROBLOCKD *xd) {
1640  uint8_t bw = tx_size_wide[tx_size];
1641  uint8_t bh = tx_size_high[tx_size];
1642 
1643  if (skip) {
1644  bw = n4_w * MI_SIZE;
1645  bh = n4_h * MI_SIZE;
1646  }
1647 
1648  set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1649  set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1650 }
1651 
1652 static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1653  int mi_row, int mi_col) {
1654  return mi_row * mi_params->mi_stride + mi_col;
1655 }
1656 
1657 static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1658  int mi_row, int mi_col) {
1659  const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1660  const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1661  const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1662 
1663  return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1664 }
1665 
1666 // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
1667 static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1668  MACROBLOCKD *const xd, int mi_row,
1669  int mi_col) {
1670  // 'mi_grid_base' should point to appropriate memory in 'mi'.
1671  const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1672  const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1673  mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1674  // 'xd->mi' should point to an offset in 'mi_grid_base';
1675  xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1676  // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1677  xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1678  xd->tx_type_map_stride = mi_params->mi_stride;
1679 }
1680 
1681 static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1682  TXFM_CONTEXT *left_ctx,
1683  TX_SIZE tx_size, TX_SIZE txb_size) {
1684  BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1685  int bh = mi_size_high[bsize];
1686  int bw = mi_size_wide[bsize];
1687  uint8_t txw = tx_size_wide[tx_size];
1688  uint8_t txh = tx_size_high[tx_size];
1689  int i;
1690  for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1691  for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1692 }
1693 
1694 static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1695  switch (tx_dim) {
1696  case 128:
1697  case 64: return TX_64X64; break;
1698  case 32: return TX_32X32; break;
1699  case 16: return TX_16X16; break;
1700  case 8: return TX_8X8; break;
1701  default: return TX_4X4;
1702  }
1703 }
1704 
1705 static INLINE TX_SIZE get_tx_size(int width, int height) {
1706  if (width == height) {
1707  return get_sqr_tx_size(width);
1708  }
1709  if (width < height) {
1710  if (width + width == height) {
1711  switch (width) {
1712  case 4: return TX_4X8; break;
1713  case 8: return TX_8X16; break;
1714  case 16: return TX_16X32; break;
1715  case 32: return TX_32X64; break;
1716  }
1717  } else {
1718  switch (width) {
1719  case 4: return TX_4X16; break;
1720  case 8: return TX_8X32; break;
1721  case 16: return TX_16X64; break;
1722  }
1723  }
1724  } else {
1725  if (height + height == width) {
1726  switch (height) {
1727  case 4: return TX_8X4; break;
1728  case 8: return TX_16X8; break;
1729  case 16: return TX_32X16; break;
1730  case 32: return TX_64X32; break;
1731  }
1732  } else {
1733  switch (height) {
1734  case 4: return TX_16X4; break;
1735  case 8: return TX_32X8; break;
1736  case 16: return TX_64X16; break;
1737  }
1738  }
1739  }
1740  assert(0);
1741  return TX_4X4;
1742 }
1743 
1744 static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1745  const TXFM_CONTEXT *const left_ctx,
1746  BLOCK_SIZE bsize, TX_SIZE tx_size) {
1747  const uint8_t txw = tx_size_wide[tx_size];
1748  const uint8_t txh = tx_size_high[tx_size];
1749  const int above = *above_ctx < txw;
1750  const int left = *left_ctx < txh;
1751  int category = TXFM_PARTITION_CONTEXTS;
1752 
1753  // dummy return, not used by others.
1754  if (tx_size <= TX_4X4) return 0;
1755 
1756  TX_SIZE max_tx_size =
1757  get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1758 
1759  if (max_tx_size >= TX_8X8) {
1760  category =
1761  (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1762  (TX_SIZES - 1 - max_tx_size) * 2;
1763  }
1764  assert(category != TXFM_PARTITION_CONTEXTS);
1765  return category * 3 + above + left;
1766 }
1767 
1768 // Compute the next partition in the direction of the sb_type stored in the mi
1769 // array, starting with bsize.
1770 static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1771  int mi_row, int mi_col,
1772  BLOCK_SIZE bsize) {
1773  const CommonModeInfoParams *const mi_params = &cm->mi_params;
1774  if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1775  return PARTITION_INVALID;
1776 
1777  const int offset = mi_row * mi_params->mi_stride + mi_col;
1778  MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1779  const BLOCK_SIZE subsize = mi[0]->bsize;
1780 
1781  assert(bsize < BLOCK_SIZES_ALL);
1782 
1783  if (subsize == bsize) return PARTITION_NONE;
1784 
1785  const int bhigh = mi_size_high[bsize];
1786  const int bwide = mi_size_wide[bsize];
1787  const int sshigh = mi_size_high[subsize];
1788  const int sswide = mi_size_wide[subsize];
1789 
1790  if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1791  mi_col + bhigh / 2 < mi_params->mi_cols) {
1792  // In this case, the block might be using an extended partition
1793  // type.
1794  const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1795  const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1796 
1797  if (sswide == bwide) {
1798  // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1799  // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1800  // half was split.
1801  if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1802  assert(sshigh * 2 == bhigh);
1803 
1804  if (mbmi_below->bsize == subsize)
1805  return PARTITION_HORZ;
1806  else
1807  return PARTITION_HORZ_B;
1808  } else if (sshigh == bhigh) {
1809  // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1810  // PARTITION_VERT_B. To distinguish the latter two, check if the right
1811  // half was split.
1812  if (sswide * 4 == bwide) return PARTITION_VERT_4;
1813  assert(sswide * 2 == bhigh);
1814 
1815  if (mbmi_right->bsize == subsize)
1816  return PARTITION_VERT;
1817  else
1818  return PARTITION_VERT_B;
1819  } else {
1820  // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1821  // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1822  // dimensions, we immediately know this is a split (which will recurse to
1823  // get to subsize). Otherwise look down and to the right. With
1824  // PARTITION_VERT_A, the right block will have height bhigh; with
1825  // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1826  // it's PARTITION_SPLIT.
1827  if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1828 
1829  if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1830  if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1831 
1832  return PARTITION_SPLIT;
1833  }
1834  }
1835  const int vert_split = sswide < bwide;
1836  const int horz_split = sshigh < bhigh;
1837  const int split_idx = (vert_split << 1) | horz_split;
1838  assert(split_idx != 0);
1839 
1840  static const PARTITION_TYPE base_partitions[4] = {
1841  PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1842  };
1843 
1844  return base_partitions[split_idx];
1845 }
1846 
1847 static INLINE void set_sb_size(SequenceHeader *const seq_params,
1848  BLOCK_SIZE sb_size) {
1849  seq_params->sb_size = sb_size;
1850  seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1851  seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1852 }
1853 
1854 // Returns true if the frame is fully lossless at the coded resolution.
1855 // Note: If super-resolution is used, such a frame will still NOT be lossless at
1856 // the upscaled resolution.
1857 static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1858  const MACROBLOCKD *xd) {
1859  int coded_lossless = 1;
1860  if (cm->seg.enabled) {
1861  for (int i = 0; i < MAX_SEGMENTS; ++i) {
1862  if (!xd->lossless[i]) {
1863  coded_lossless = 0;
1864  break;
1865  }
1866  }
1867  } else {
1868  coded_lossless = xd->lossless[0];
1869  }
1870  return coded_lossless;
1871 }
1872 
1873 static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1874  return seq_level_idx == SEQ_LEVEL_MAX ||
1875  (seq_level_idx < SEQ_LEVELS &&
1876  // The following levels are currently undefined.
1877  seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1878  seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1879  seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3 &&
1880  seq_level_idx != SEQ_LEVEL_7_0 && seq_level_idx != SEQ_LEVEL_7_1 &&
1881  seq_level_idx != SEQ_LEVEL_7_2 && seq_level_idx != SEQ_LEVEL_7_3);
1882 }
1883 
1886 #ifdef __cplusplus
1887 } // extern "C"
1888 #endif
1889 
1890 #endif // AOM_AV1_COMMON_AV1_COMMON_INT_H_
int(* aom_get_frame_buffer_cb_fn_t)(void *priv, size_t min_size, aom_codec_frame_buffer_t *fb)
get frame buffer callback prototype
Definition: aom_frame_buffer.h:64
int(* aom_release_frame_buffer_cb_fn_t)(void *priv, aom_codec_frame_buffer_t *fb)
release frame buffer callback prototype
Definition: aom_frame_buffer.h:77
#define AOM_PLANE_U
Definition: aom_image.h:200
enum aom_chroma_sample_position aom_chroma_sample_position_t
List of chroma sample positions.
enum aom_transfer_characteristics aom_transfer_characteristics_t
List of supported transfer functions.
enum aom_color_primaries aom_color_primaries_t
List of supported color primaries.
enum aom_matrix_coefficients aom_matrix_coefficients_t
List of supported matrix coefficients.
enum aom_bit_depth aom_bit_depth_t
Bit depth for codecThis enumeration determines the bit depth of the codec.
@ AOM_CODEC_CORRUPT_FRAME
The coded data for this stream is corrupt or incomplete.
Definition: aom_codec.h:195
Top level common structure used by both encoder and decoder.
Definition: av1_common_int.h:755
uint8_t * last_frame_seg_map
Definition: av1_common_int.h:937
RestorationInfo rst_info[3]
Definition: av1_common_int.h:951
WarpedMotionParams global_motion[REF_FRAMES]
Definition: av1_common_int.h:975
int superres_upscaled_width
Definition: av1_common_int.h:804
int8_t ref_frame_side[REF_FRAMES]
Definition: av1_common_int.h:1042
struct scale_factors ref_scale_factors[REF_FRAMES]
Definition: av1_common_int.h:874
RefCntBuffer * prev_frame
Definition: av1_common_int.h:831
FRAME_CONTEXT * default_frame_context
Definition: av1_common_int.h:992
int ref_frame_id[REF_FRAMES]
Definition: av1_common_int.h:1017
int superres_upscaled_height
Definition: av1_common_int.h:805
DeltaQInfo delta_q_info
Definition: av1_common_int.h:970
SequenceHeader * seq_params
Definition: av1_common_int.h:981
int width
Definition: av1_common_int.h:780
RefCntBuffer * cur_frame
Definition: av1_common_int.h:837
CdefInfo cdef_info
Definition: av1_common_int.h:960
loop_filter_info_n lf_info
Definition: av1_common_int.h:943
CurrentFrame current_frame
Definition: av1_common_int.h:759
int remapped_ref_idx[REF_FRAMES]
Definition: av1_common_int.h:859
RestorationLineBuffers * rlbs
Definition: av1_common_int.h:953
aom_film_grain_t film_grain_params
Definition: av1_common_int.h:965
int show_existing_frame
Definition: av1_common_int.h:905
uint32_t buffer_removal_times[(8 *4)+1]
Definition: av1_common_int.h:820
int temporal_layer_id
Definition: av1_common_int.h:1048
struct aom_internal_error_info * error
Definition: av1_common_int.h:763
int showable_frame
Definition: av1_common_int.h:898
int tpl_mvs_mem_size
Definition: av1_common_int.h:1031
uint32_t frame_presentation_time
Definition: av1_common_int.h:826
struct loopfilter lf
Definition: av1_common_int.h:944
int spatial_layer_id
Definition: av1_common_int.h:1054
FeatureFlags features
Definition: av1_common_int.h:910
struct scale_factors sf_identity
Definition: av1_common_int.h:866
YV12_BUFFER_CONFIG rst_frame
Definition: av1_common_int.h:954
CommonModeInfoParams mi_params
Definition: av1_common_int.h:915
uint8_t superres_scale_denominator
Definition: av1_common_int.h:812
int show_frame
Definition: av1_common_int.h:890
struct segmentation seg
Definition: av1_common_int.h:932
CommonQuantParams quant_params
Definition: av1_common_int.h:927
TPL_MV_REF * tpl_mvs
Definition: av1_common_int.h:1027
int current_frame_id
Definition: av1_common_int.h:1016
int32_t * rst_tmpbuf
Definition: av1_common_int.h:952
RefCntBuffer * ref_frame_map[REF_FRAMES]
Definition: av1_common_int.h:883
CommonContexts above_contexts
Definition: av1_common_int.h:1010
CommonTileParams tiles
Definition: av1_common_int.h:997
BufferPool * buffer_pool
Definition: av1_common_int.h:1002
int ref_frame_sign_bias[REF_FRAMES]
Definition: av1_common_int.h:1036
FRAME_CONTEXT * fc
Definition: av1_common_int.h:986
int height
Definition: av1_common_int.h:781
int render_width
Definition: av1_common_int.h:791
int render_height
Definition: av1_common_int.h:792
Parameters related to CDEF.
Definition: av1_common_int.h:198
int cdef_bits
Number of CDEF strength values in bits.
Definition: av1_common_int.h:220
int allocated_mi_rows
Number of rows in the frame in 4 pixel.
Definition: av1_common_int.h:222
int allocated_num_workers
Number of CDEF workers.
Definition: av1_common_int.h:224
size_t allocated_srcbuf_size
CDEF intermediate buffer size.
Definition: av1_common_int.h:210
int nb_cdef_strengths
Number of CDEF strength values.
Definition: av1_common_int.h:214
int cdef_damping
CDEF damping factor.
Definition: av1_common_int.h:212
uint16_t * srcbuf
CDEF intermediate buffer.
Definition: av1_common_int.h:204
Contexts used for transmitting various symbols in the bitstream.
Definition: av1_common_int.h:718
PARTITION_CONTEXT ** partition
Definition: av1_common_int.h:723
int num_planes
Definition: av1_common_int.h:747
ENTROPY_CONTEXT ** entropy[3]
Definition: av1_common_int.h:733
int num_tile_rows
Definition: av1_common_int.h:748
int num_mi_cols
Definition: av1_common_int.h:749
TXFM_CONTEXT ** txfm
Definition: av1_common_int.h:741
Params related to MB_MODE_INFO arrays and related info.
Definition: av1_common_int.h:505
int mb_cols
Definition: av1_common_int.h:515
MB_MODE_INFO * mi_alloc
Definition: av1_common_int.h:539
int mi_rows
Definition: av1_common_int.h:526
void(* setup_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:594
void(* free_mi)(struct CommonModeInfoParams *mi_params)
Definition: av1_common_int.h:589
int mi_cols
Definition: av1_common_int.h:531
int mi_alloc_size
Definition: av1_common_int.h:543
int MBs
Definition: av1_common_int.h:520
TX_TYPE * tx_type_map
Definition: av1_common_int.h:579
int mi_alloc_stride
Definition: av1_common_int.h:547
int mi_grid_size
Definition: av1_common_int.h:567
int mi_stride
Definition: av1_common_int.h:571
int mb_rows
Definition: av1_common_int.h:510
MB_MODE_INFO ** mi_grid_base
Definition: av1_common_int.h:563
void(* set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, int height, int mode, BLOCK_SIZE min_partition_size)
Definition: av1_common_int.h:605
BLOCK_SIZE mi_alloc_bsize
Definition: av1_common_int.h:554
Parameters related to quantization at the frame level.
Definition: av1_common_int.h:614
int u_ac_delta_q
Definition: av1_common_int.h:639
const qm_val_t * u_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:688
int qmatrix_level_v
Definition: av1_common_int.h:710
const qm_val_t * giqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:670
int16_t u_dequant_QTX[8][2]
Definition: av1_common_int.h:659
const qm_val_t * y_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:684
int qmatrix_level_y
Definition: av1_common_int.h:708
int v_ac_delta_q
Definition: av1_common_int.h:644
bool using_qmatrix
Definition: av1_common_int.h:701
int u_dc_delta_q
Definition: av1_common_int.h:629
int qmatrix_level_u
Definition: av1_common_int.h:709
int base_qindex
Definition: av1_common_int.h:618
int16_t v_dequant_QTX[8][2]
Definition: av1_common_int.h:660
const qm_val_t * v_iqmatrix[8][TX_SIZES_ALL]
Definition: av1_common_int.h:692
int16_t y_dequant_QTX[8][2]
Definition: av1_common_int.h:658
int v_dc_delta_q
Definition: av1_common_int.h:633
int y_dc_delta_q
Definition: av1_common_int.h:624
const qm_val_t * gqmatrix[(1<< 4)][3][TX_SIZES_ALL]
Definition: av1_common_int.h:674
Params related to tiles.
Definition: av1_common_int.h:431
int uniform_spacing
Definition: av1_common_int.h:447
int max_width_sb
Definition: av1_common_int.h:434
int log2_rows
Definition: av1_common_int.h:454
int min_log2_rows
Definition: av1_common_int.h:466
int width
Definition: av1_common_int.h:455
int max_log2_rows
Definition: av1_common_int.h:474
int row_start_sb[MAX_TILE_ROWS+1]
Definition: av1_common_int.h:488
int cols
Definition: av1_common_int.h:432
int max_height_sb
Definition: av1_common_int.h:435
unsigned int large_scale
Definition: av1_common_int.h:492
unsigned int single_tile_decoding
Definition: av1_common_int.h:498
int max_log2_cols
Definition: av1_common_int.h:470
int log2_cols
Definition: av1_common_int.h:453
int min_log2
Definition: av1_common_int.h:478
int rows
Definition: av1_common_int.h:433
int min_inner_width
Definition: av1_common_int.h:440
int min_log2_cols
Definition: av1_common_int.h:462
int col_start_sb[MAX_TILE_COLS+1]
Definition: av1_common_int.h:483
int height
Definition: av1_common_int.h:456
Frame level features.
Definition: av1_common_int.h:362
InterpFilter interp_filter
Definition: av1_common_int.h:411
bool allow_ref_frame_mvs
Definition: av1_common_int.h:385
bool allow_warped_motion
Definition: av1_common_int.h:381
bool allow_screen_content_tools
Definition: av1_common_int.h:379
bool switchable_motion_mode
Definition: av1_common_int.h:409
TX_MODE tx_mode
Definition: av1_common_int.h:410
bool reduced_tx_set_used
Definition: av1_common_int.h:398
bool allow_intrabc
Definition: av1_common_int.h:380
int byte_alignment
Definition: av1_common_int.h:420
bool coded_lossless
Definition: av1_common_int.h:389
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context
Definition: av1_common_int.h:425
bool error_resilient_mode
Definition: av1_common_int.h:404
int primary_ref_frame
Definition: av1_common_int.h:416
bool disable_cdf_update
Definition: av1_common_int.h:366
bool allow_high_precision_mv
Definition: av1_common_int.h:371
bool cur_frame_force_integer_mv
Definition: av1_common_int.h:375
bool all_lossless
Definition: av1_common_int.h:393
Stores the prediction/txfm mode of the current coding block.
Definition: blockd.h:222
BLOCK_SIZE bsize
The block size of the current coding block.
Definition: blockd.h:228
Parameters related to Restoration Info.
Definition: restoration.h:255
External frame buffer.
Definition: aom_frame_buffer.h:40
Variables related to current coding block.
Definition: blockd.h:577
bool left_available
Definition: blockd.h:633
uint8_t * tx_type_map
Definition: blockd.h:673
int mb_to_bottom_edge
Definition: blockd.h:687
TXFM_CONTEXT * left_txfm_context
Definition: blockd.h:747
struct macroblockd_plane plane[3]
Definition: blockd.h:613
int mb_to_top_edge
Definition: blockd.h:686
int mb_to_right_edge
Definition: blockd.h:685
bool up_available
Definition: blockd.h:629
MB_MODE_INFO * above_mbmi
Definition: blockd.h:652
bool chroma_up_available
Definition: blockd.h:637
TXFM_CONTEXT * above_txfm_context
Definition: blockd.h:740
bool chroma_left_available
Definition: blockd.h:641
PARTITION_CONTEXT * above_partition_context
Definition: blockd.h:725
MB_MODE_INFO * chroma_left_mbmi
Definition: blockd.h:659
TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE]
Definition: blockd.h:754
int tx_type_map_stride
Definition: blockd.h:678
MB_MODE_INFO * chroma_above_mbmi
Definition: blockd.h:666
int mi_row
Definition: blockd.h:582
int mi_stride
Definition: blockd.h:589
bool is_last_vertical_rect
Definition: blockd.h:794
bool is_first_horizontal_rect
Definition: blockd.h:799
uint8_t width
Definition: blockd.h:772
struct aom_internal_error_info * error_info
Definition: blockd.h:845
CFL_CTX cfl
Definition: blockd.h:901
int lossless[8]
Definition: blockd.h:824
ENTROPY_CONTEXT left_entropy_context[3][MAX_MIB_SIZE]
Definition: blockd.h:717
ENTROPY_CONTEXT * above_entropy_context[3]
Definition: blockd.h:710
MB_MODE_INFO ** mi
Definition: blockd.h:624
uint8_t height
Definition: blockd.h:773
MB_MODE_INFO * left_mbmi
Definition: blockd.h:647
PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE]
Definition: blockd.h:732
bool is_chroma_ref
Definition: blockd.h:608
int mi_col
Definition: blockd.h:583
int mb_to_left_edge
Definition: blockd.h:684
YV12 frame buffer data structure.
Definition: yv12config.h:39